

Sensory Session 3: Jacks & Stems

Pros and cons of stem inclusion and sorting

Stone Tower Winery, March 22, 2023 Shane McManigle, Doug Fabbioli, Kirsty Harmon, Joy Ting

	Upcoming Events
March 22	WRE Sensory Session: Jacks and Stems In-person, Stone Towner Winery, 1PM
April 6	Postponed
April 18	Eastern Viticulture & Enology Forum: Pet Nat roundtable
April 19	VWA Ask the Experts: Tracking grape phenolics during ripening, including a Virginia case study
April 27	WRE Sensory Session: Aging strategies part 1 Virtual
May 5	Virginia Wine Benefit
May 24	WRE Sensory Session: Building a bigger red In-person, Central Virginia (TBD)

VWA Ask the Expert

Phenolic Maturation in Grapes

Case Studies and FAQ with Steve Price, ETS Labs April 19 1-2 PM

Steve developed the phenolic assays offered by ETS, works with client support for the phenolic program and works on a range of ETS research projects.

He will present information on phenolic maturation in general, as well as case studies from Virginia grapes

Register through VWA

Virginia Wine Benefit

Engaging the Virginia wine industry to benefit our community

May 5 @ 6:30 PM

The Generous Pour

Inaugural auction event at Veritas Vineyard and Winery

Reggie Leonard MC/Auctioneer Beneficiaries: WRE and Blue Ridge Food Bank

Tickets \$150

Introduction

Introduce yourself

Do you include whole clusters in any of your fermentations?

What winemaking goals does this fulfill?

Which varieties?

What are the benefits?

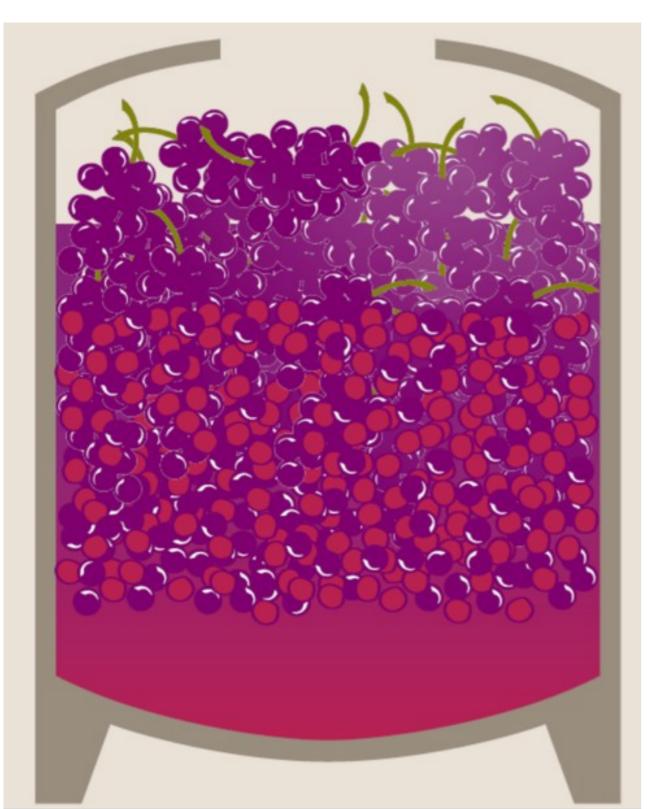
What are the drawbacks?

Traditional practice

(Destemmer invented in 19th Century)

Beaujolais, Rioja, Georgia

Burgundy, Rhône, Australia, and California



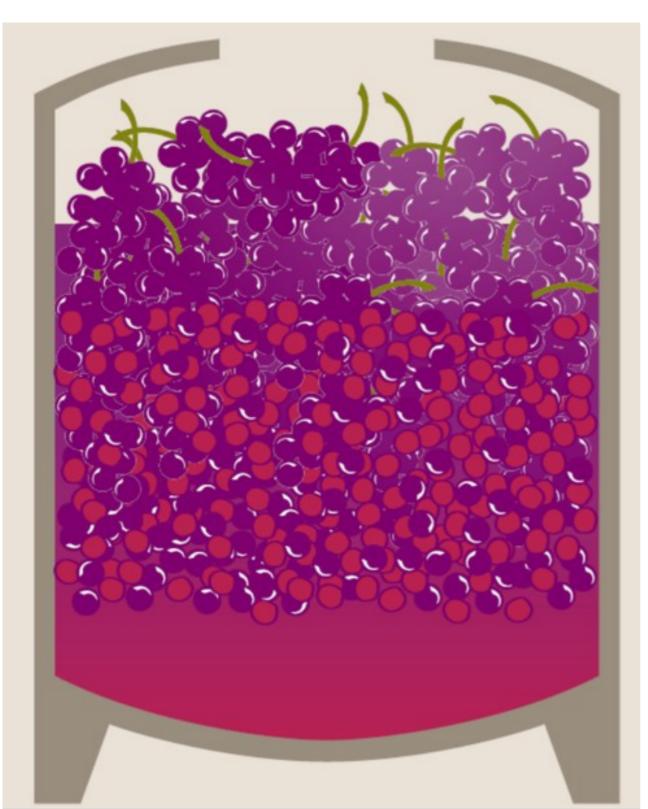
"greater complexity and silkier tannins" "to add freshness" "fragrance and perfume" "add strength and firmness to the tannins"

"dull the fruit" make the wine "too herbal" give it a "mulch/compost character"

Jamie Goode, "Stemming the Tide", 2012

Three fractions Teznier & Flanzy 2011

Fraction 1

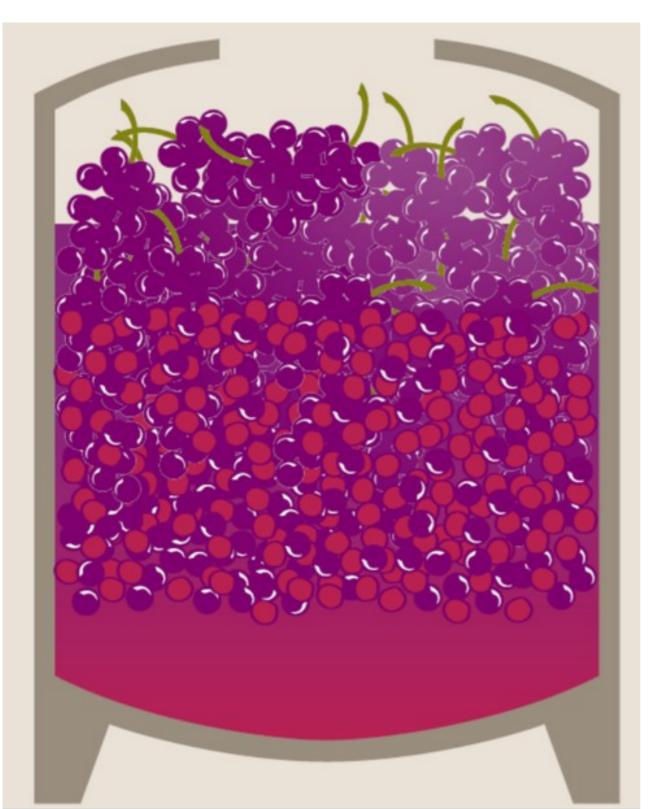

Intact clusters CO₂ rich atmosphere Autofermentation (carbonic maceration)

Strawberry, raspberry, cherry and kirsch (fruity) Ethyl cinnamate & benzaldehyde (cinnamon, spice)

No alcoholic extraction from skins (Low tannin, low color)

Potential for aerobic spoilage organisms (Klockera) Acetic Acid Ethyl Acetate

Three fractions Teznier & Flanzy 2011


Fraction 2

Intact clusters Surrounded by fermenting must

Autofermentation Break down more quickly (alcohol) More alcoholic extraction from skins More varietal aromas, less CM character

Less oxygen, less potential for spoilage

Three fractions Teznier & Flanzy 2011

Fraction 3

More traditional yeast fermentation Stems are present

Potassium Methoxypyrazine 50% of IBMP in clusters Decreases with ripening C-6 and Hexanol (vegetal) Phenolics Water Aromas Rotundone (spicy, pepper) Methyl Saliicilate (minty, fresh)

Before we start...

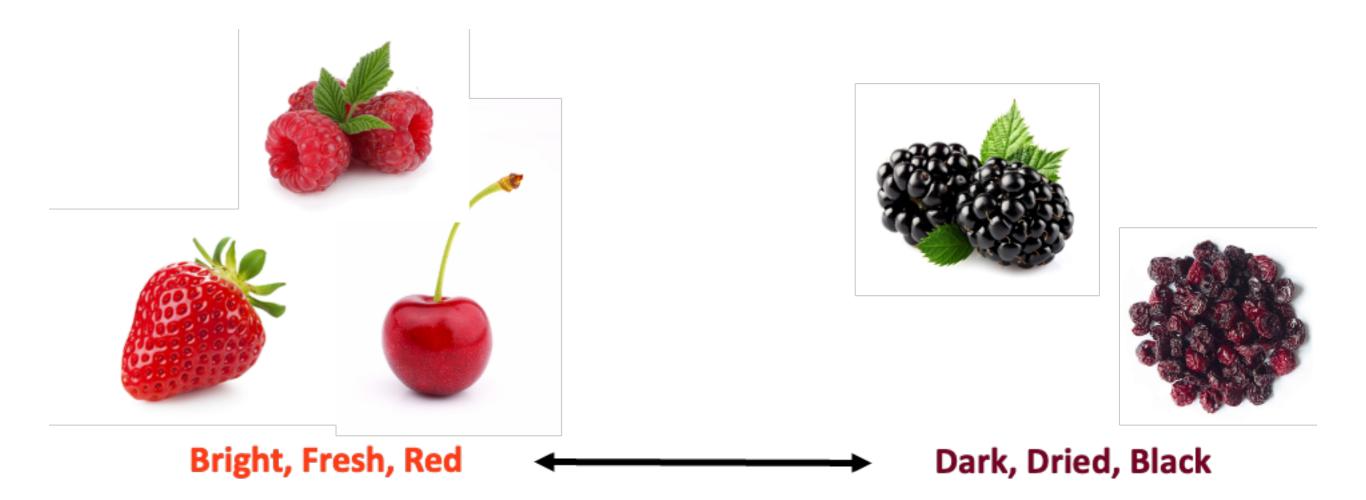
Purpose of sensory sessions

Personal experience, but also sensory statistics

Different groups for tasting order

Is there a difference?

Triangle test


Descriptors - some we will define together beforehand

Good sensory requires focus; please remain quiet.

All experiments will be explained; draft reports provided once sensory is complete.

Fruit Character

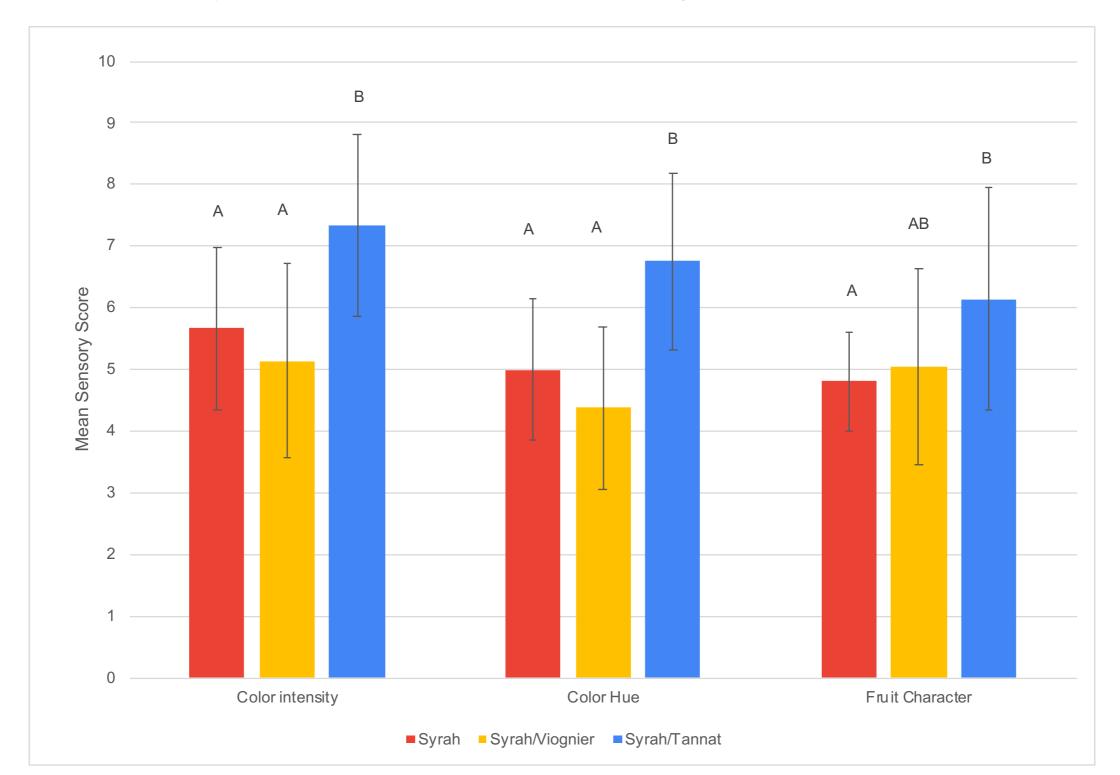
Its not just about intensity

Astringency Quality Standards

Flight 1

Scan the QR code provided for your group number

- **NOT** a triangle test!
- 4th wine is for demonstration only.


Scores for first three wines.

Don't forget to submit form when you are done!

Background: Exploring the effects of co-fermentation in Syrah (2021) Doukenie Winery Dawn Stein

Syrah was co-fermented with 15% Viognier or 15% Tannat

Do whole clusters lead to better Syrah varietal expression? Doukenie Winery Shane McManigle

- Cultivated in Rhône since the Romans
- Late bud break
- Shrivels when ripe (>21 Brix)
- Susceptible to Botrytis (shoots and clusters)
- Cold tender, bud necrosis
- 2021 Grape Report 25 tons (out of 7688 total vinifera)

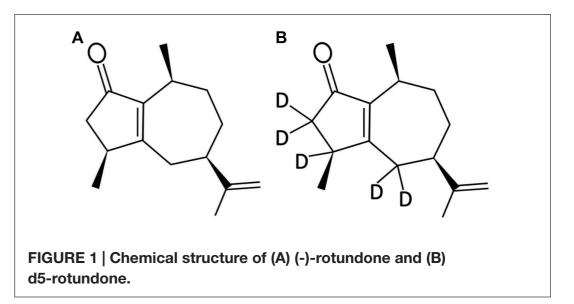
100% Destemmed

75% Destemmed 25% Whole Cluster

50% Destemmed 50% Whole Cluster

Rotundone Syrah varietal character

Responsible for "peppery" aroma in Shiraz Positive wine aroma


Associated with cool temps, high vigor, water availability

Highly variable within vineyards, vines, bunches

Higher concentration in stems and leaves

Produced by skins of grapes

Extracted by crushing and fermentation Increase concentration with whole cluster ferments

Zhang et al 2016

General Methods

All bins the same

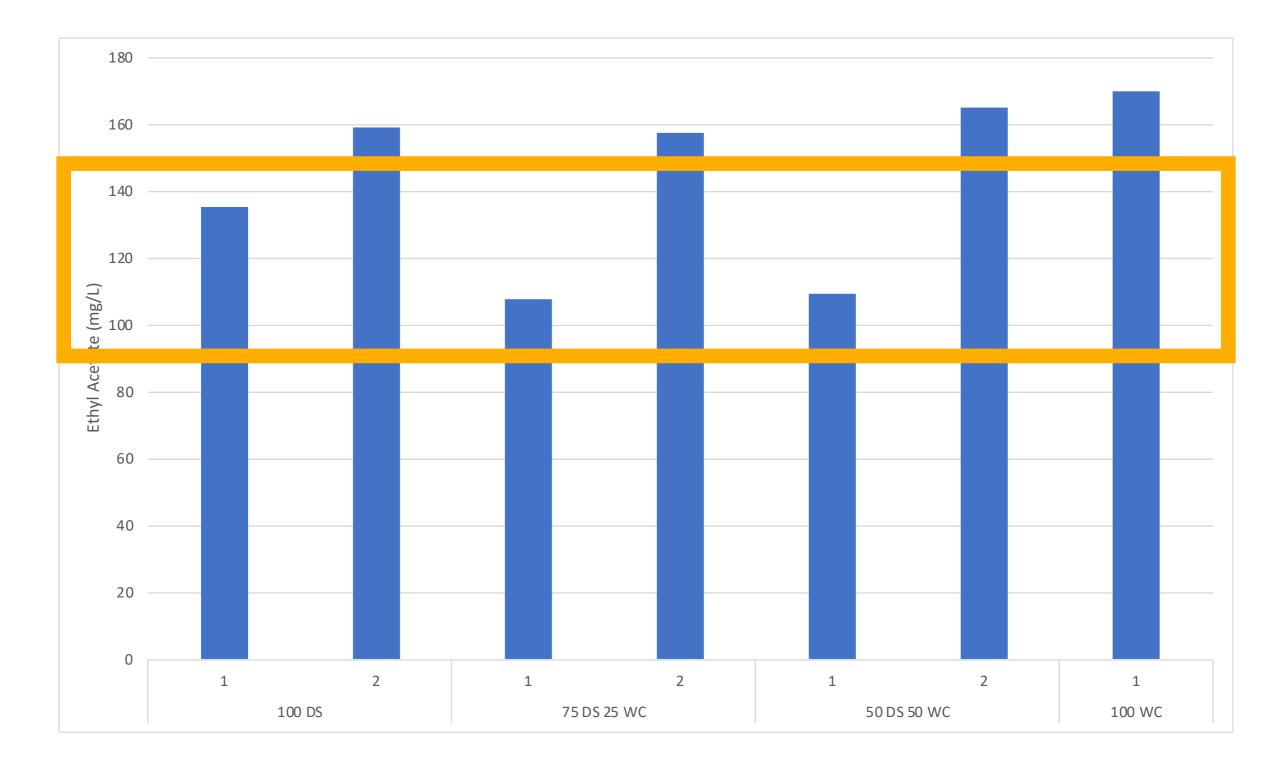
50 mg/L SO₂ at processing 7 day cold soak Inoculated with D254 rehydrated in GoFerm Addition of 2 g/L tartaric acid Chaptalized by 2 Brix Cool fermentation 20 days total maceration Free run only for the experiment

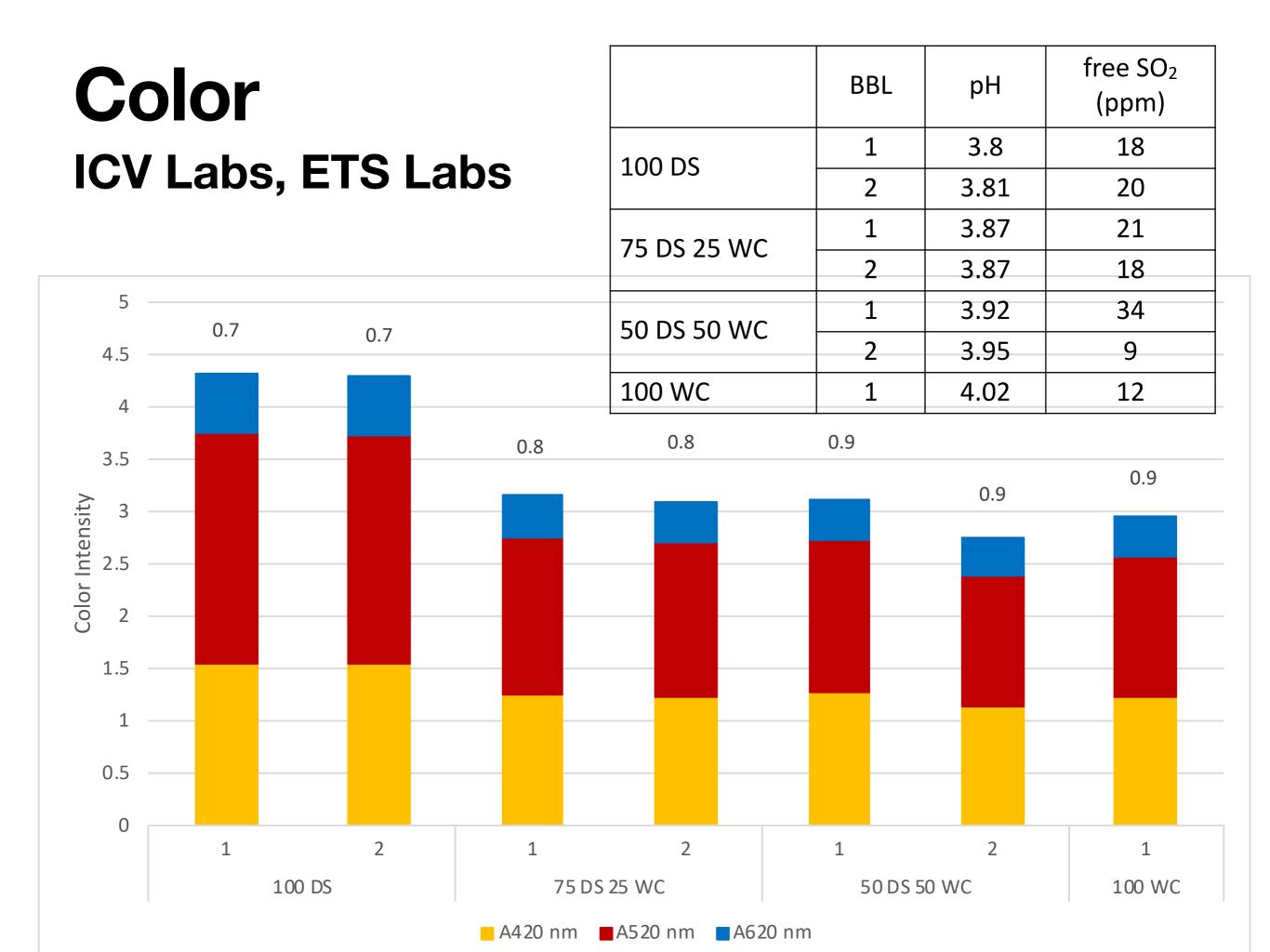
Put the wines in order of whole cluster inclusion

Harvest

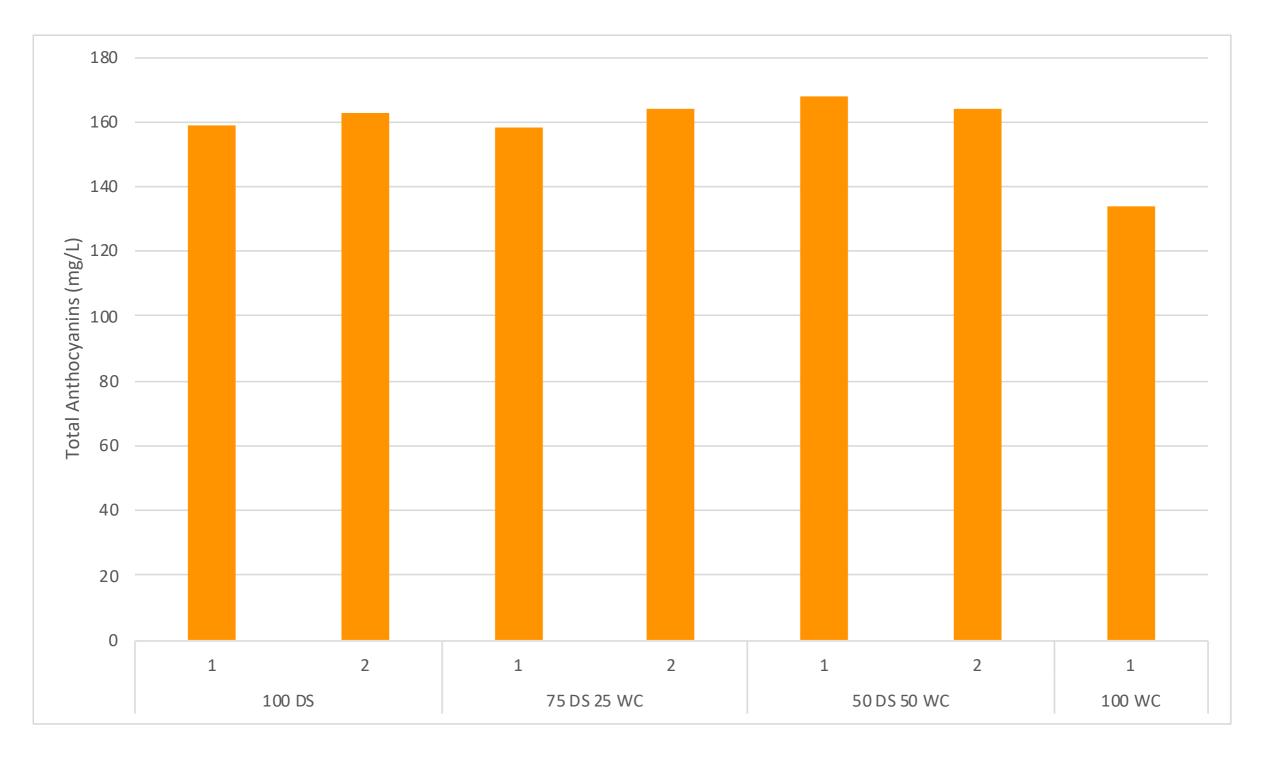
Juice chemistry, Vinterra, Sept 9, 4 tons

	Brix	۶U	Titratable	Acetic Acid	YAN	Π	Potassium
Treatment	DLIX	рН	Acidity (g/L)	(g/L)	(mg/L)		(mg/L)
100 DS	18.05	3.5	5.29	0	50.87		1858
75 DS 25 WC	18.85	3.54	5.42	0	84.01		1533
50 DS 50WC	19.39	3.57	5.35	0.09	118.74		1319

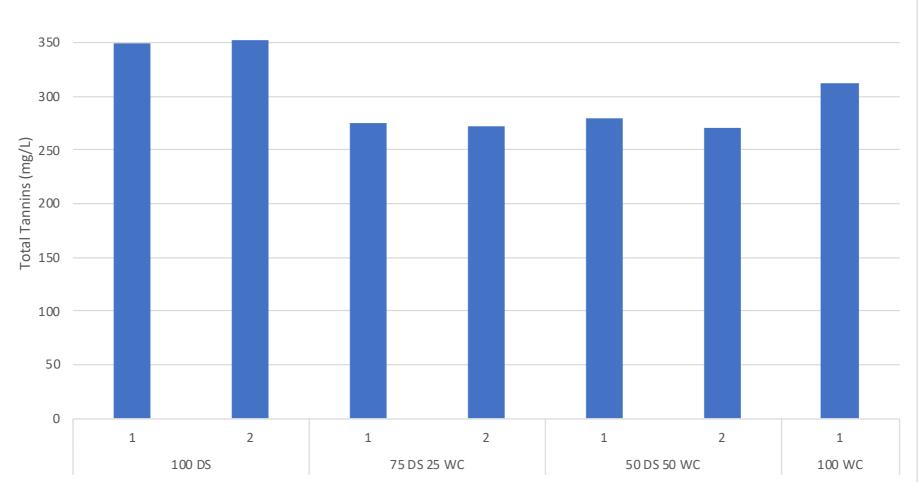

		Acetic A	.cid (g/L)	۶U	Titratable	Alcohol	free SO ₂
	BBL	(January)	(March)	рН	Acidity (g/L)	(%)	(ppm)
100.00		0.71	0.79	3.8	4.68	12.63	18
100 DS	021.	harves	ted ^{.7} 8n	$Oct^{81}8$	2.5 ⁴ .7 ¹ ons,	19⁶Br	<i>ix</i> ²⁰
75 DS 25 WC	<u>1</u>	0.89	0.94	3.87	4.58	12.21	21
	2	0.91	0.97	3.87	4.64	12.26	18
	1	0.88	0.95	3.92	4.48	12.01	34


Wine Chemistry

ICV Labs, January and March 2023


		Acetic	Acid (g/L)		— pH		Titratable Acidity	Alcohol	free SO ₂
	BB	(January)	(March)		·		, (g/L)	(%)	(ppm)
100 DS -	1	0.71	0.79		3.8		4.68	12.63	18
	2	0.7	0.78		3.81		4.71	12.66	20
75 DS 25 WC	1	0.89	0.94		3.87		4.58	12.21	21
	2	0.91	0.97		3.87		4.64	12.26	18
50 DS 50 WC	1	0.88	0.95		3.92		4.48	12.01	34
	2	1.01	1.1		3.95		4.56	12.06	9
100 WC	1	0.98	1.05		4.02		4.53	11.59	12

Ethyl Acetate ICV Labs March 2023



Anthocyanins ETS Labs March 2023

Tannins

ETS Labs March 2023

		Anthocy	anins	Catechin	Tannin	
	Barrel #	Polymeric	Total	Catechini		
100 DS	1	27	159	20	350	
100 D3	2	28	163	21	353	
75 DS 25 WC	1	22	158	16	275	
75 D3 25 WC	2	22	164	16	272	
50 DS 50 WC	1	21	168	18	279	
	2	21	164	18	270	
100 WC	1	22	134	22	312	

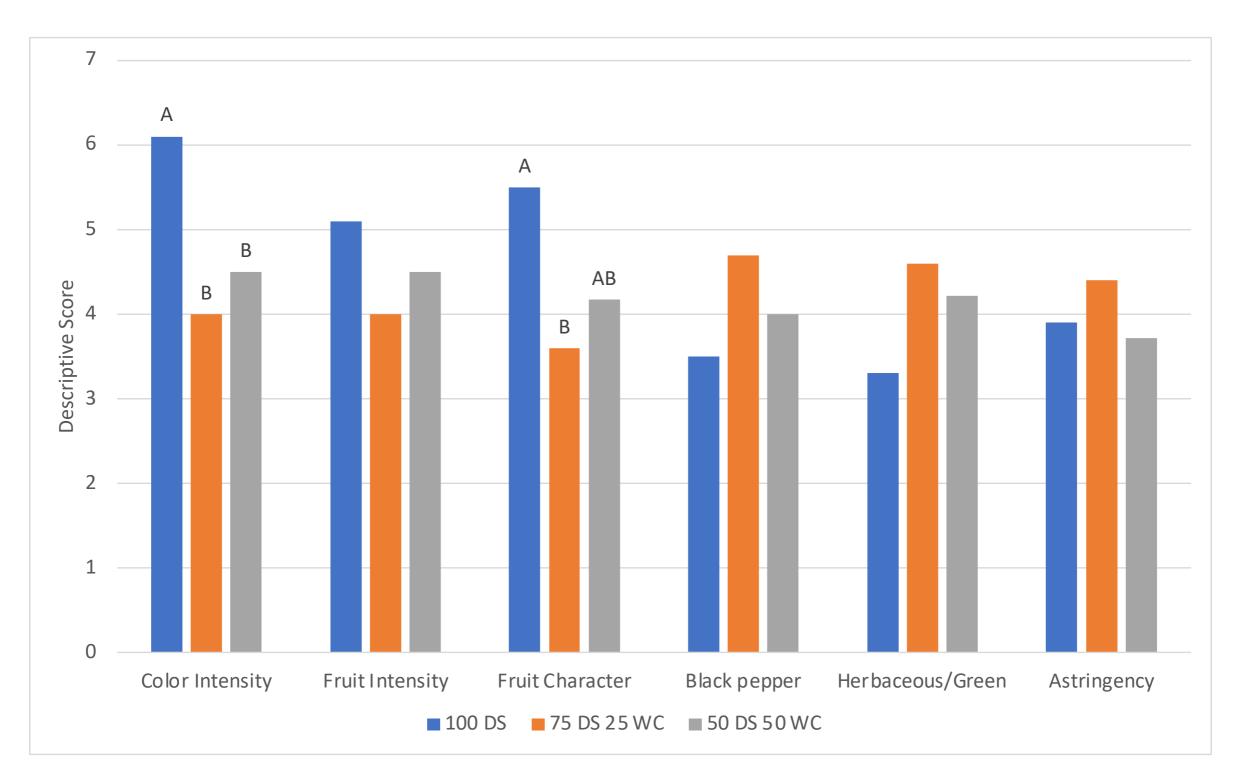

Flight 1 Sensory Impressions

Table 4: Repeated measures ANOVA of descriptive scores from blind sensory analysis of Syrah

	100	DS	75 DS 2	25 WC	50 DS 5	50 WC		
	Mean	SD	Mean	SD	Mean	SD	F	Р
Color Intensity	6.1	1.55	4	1.37	4.5	1.62	22	< 0.0001
Fruit Intensity	5.1	1.75	4	1.82	4.5	1.25	2.89	0.07
Fruit Character	5.5	2.23	3.6	1.72	4.17	1.69	4.86	0.01
Black pepper	3.5	2.12	4.7	2.52	4	2.28	0.21	0.22
Herbaceous/Green	3.3	2.09	4.6	2.5	4.22	2.1	2.5	0.09
Astringency	3.9	1.77	4.4	1.76	3.72	1.49	1.39	0.26

Figure 3: Mean descriptive scores for five attributes of three treatments of Syrah. Endcaps show significant differences.

Summary of Whole Clusters 15 WRE Experiments over 7 years

Increased: potassium, pH, acetic acid, ethyl acetate Decreased: color, body/volume

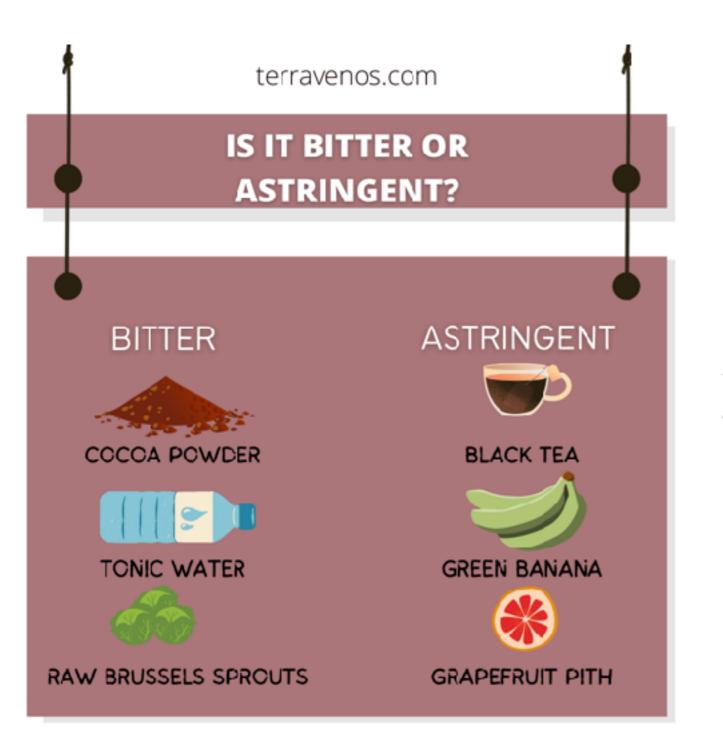
Inconsistent Effects on Phenolics Dependent on stomping, heat?, variety?

Whole cluster fermentations have not always lead to sensory differences Only when >50% WC inclusion, and not always

Winery	Year	Variety	Setup	Result
				Higher ethyl acetate, lower color and tannins in whole cluster,
Blenheim 2017	2017	Merlot	Desternmed vs. carbonic in tank	statistically significant sensory, slight preference for carbonic
				maceration wine
				Little difference in chemistry (VA), lower color in carbonic, high hue,
Blenheim	2016	Merlot	Destem vs. carbonic with 20 L of juice in the tank	much lower phenolics of all kinds (almost rose), warmer ferm temps in
Brennenn	2010	Michoe	bestern vs. carbonic with 20 c of juice in the tank	traditional, much more ester in CM, much more body and astringency in
				trad
Blenheim Vineyards	2015	Cabernet Franc	Destem vs. 30% whole cluster	WC had much lower tannin, few other differences, no sensory
Brennenn vincyaras	2015	Cabernet Hand	Destern vs. 5676 whole cruster	difference
Blenheim Vineyards	2014	Cabernet Franc	Desetem, 70/30, 100%	Decline in color in proportion to WC inclusion, descriptors often the
Brennenn vineyards	2014	cabernet franc	besetem, 70, 50, 10070	same among wines, WC more savory with lighter body
Bluestone	2017	Chambourcin	Destem and crush, 30% whole cluster, 30% stems only	Inconsistent differences in phenolics, sensory not consisent
				Whole cluster led to less color intensity, lower phenoics across the
Bluestone Vineyards	2016	Chambourcin	Destern and lightly crushed, 70/30, 50/50	board, lower anthocyanins, and slightly lower tannin, few sensory
				trends
				Lower lactic acid in carbonic, much higher color intensity in carbonic,
Chrysalis	2017	Norton	Destem and crush vs. carbonic maceration	much higher pulp phenolics, much higher tannins, sensory statistically
cinysuis				different, with preference for cabonic (higher body). Higher Va in the
				carbonic
Early Mountain	2017	Petit Verdot	Destern vs. 100% whole cluster	Very little difference in wine chemistry, higher tannin and phenolics,
				lower anthocyanins (small differences), no sensory difference
Early Mountain	2017	Cabernet Franc	Destem vs. 100% whole cluster	Increase in potassium in whole clusters, slightly lower color in whole
				cluster, lower anthocyanins, sensory not significantly different.
Early Mountain	2015	Syrah	Destern vs. 75/25, 25/75	All had RS, WH had higher tannin, lower pigment, lower color intensity,
		-1		preference for 75/25
Keswick Vineyards	2016	Cabernet Franc	All destemmed, added 0, 5, 10% stems back in	Very little difference in wine chemistry or phenolics, not different in
				sensory
King Family	2016	Merlot	Desetem vs. 70% destemmed/30% whole cluster	Whole cluster somewhat lower anthocyanins but slightly higher color,
,				wine was different in triangle, no real difference in attributes
King Family 2016				VA notably higher with whole clusters, notably higher catechin lower
	2016	Cabernet Franc	Destern, 60/40%, 10/90% (ds/wc)	anthocyanins in whole clusters, slightly higher tannin in wc, different in
				triangle, difference between "estery" and "ripe" fruit
King Family	2015	Cabernet Franc	Destem vs. 75/25	WC had higher pH, slightly lower color, no significant sensory difference
,				
Rosemont of Virginia	2017	Syrah	Destem vs. 30% whole cluster	Whole cluster had slightly higher color, higher catechin and epicatechin
				in whole cluster, no sensory differences

Flight 2

Scan the QR code provided for your group number Triangle Test


Why is that one different?

Answer each of the questions.

Don't forget to submit form when you are done!

Bitterness vs. Astringency

Bitterness is a taste Often at the back of the tongue

Astringency is a tactile feeling "Shrinking, drawing or puckering of the epithelium" Drying of the mouth

Flight 3

Scan the QR code provided for your group number Triangle Test

Why is that one different?

Answer each of the questions.

Don't forget to submit form when you are done!

Comparing chemical and sensory effects of destemmer speed in Cabernet Franc & Petit Verdot

Kirsty Harmon and Scott Wilcox Blenheim Vineyards

Experiment: Auger speed "low" (1) and "high" (5) Cabernet Franc and Petit Verdot Not distinguishable in triangle test No significant differences in sensory characteristics

But... all those jacks!

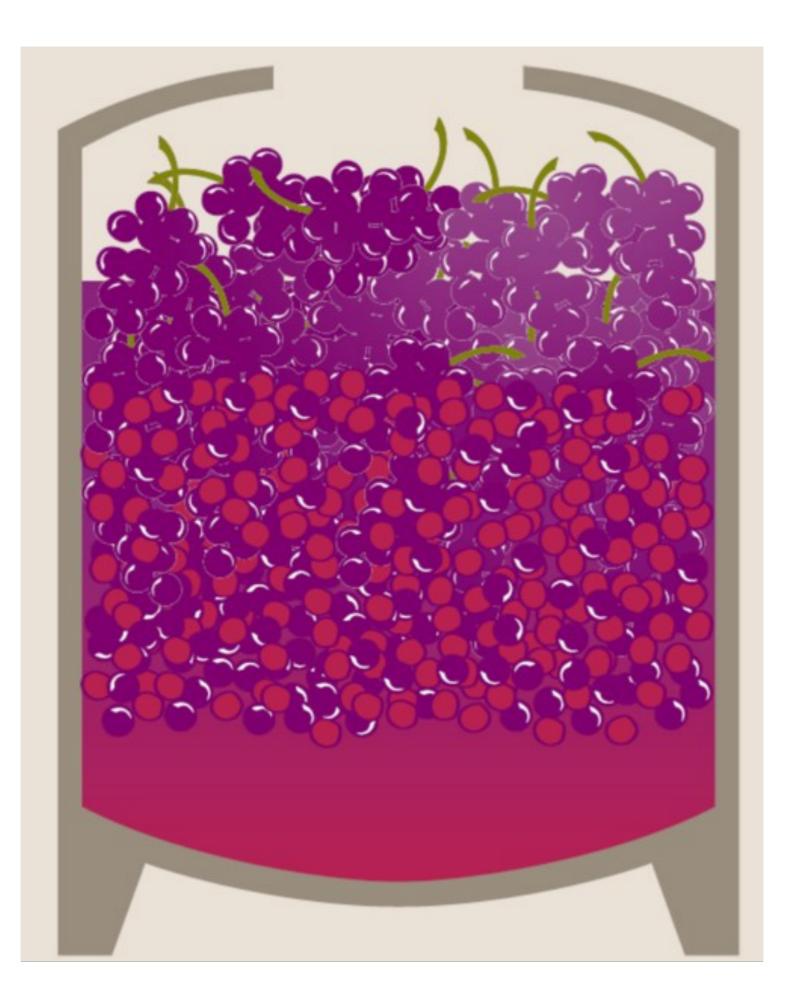
Do Jacks really Matter? Investigating the need for sorting after destemming in Cab Franc and Petit Verdot Doug Fabbioli

Fabbioli Cellars

Do you sort? When? Why?

At what cost? Does it really make a difference?

We know that prefermentation sorting is important with regard to phenolic composition of wines, as is gentle fruit handling. ... An area traditionally overlooked is post-destemming sorting to remove cap stems or jacks. Stem tannins are chemically different from skin tannins, and impart a different sensory profile. Stem tannins, including cap stem tannins, are more astringent and harsher than skin tannins. Jack stems in the fermentor can be a problem, if the concentration is high and the stems are green or not lignified, resulting in increased tannin intensity and astringency.


Zoecklein, Enology Notes #117 (2006) when discussing phenolic compounds in red wine processing

Use care in destemming. A high concentration of immature cap stems suggests the need for postdestemming sorting. This may be a requirement for consistent premium red wines in this region, and is always a good idea. This may be essential if the red must contains a high concentration of immature cap stems or jacks.

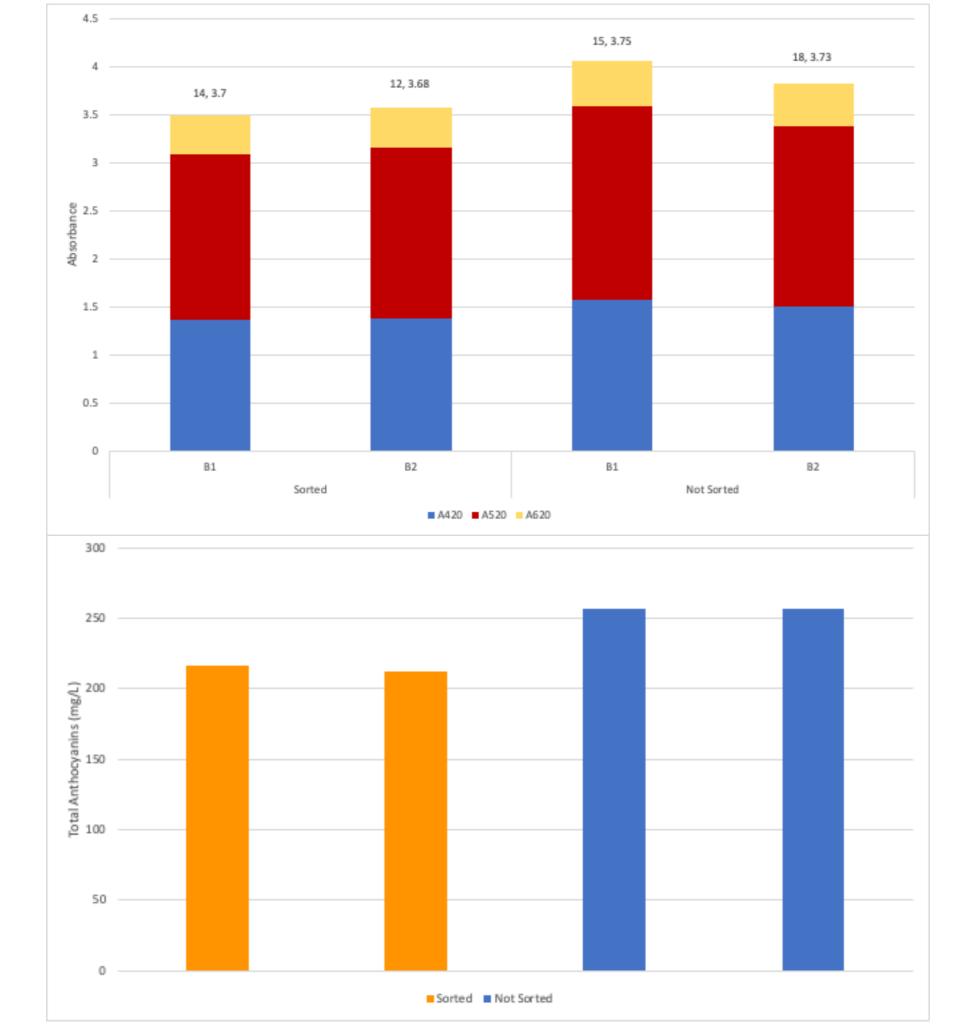
Zoecklein, Enology Notes #107 (2005) when discussing immature cap stem phenols caused by truncated ripening

Goup (AKA)	Chemical	Source	Typical (Range) mg/L	Role in wine/indicator of	Sensory Impact						
	Non-flavenoid										
Cinnamic acids	ICatteic acid. Cattaric Acid		250	Measure of oxidative stress; can be copigments for anthocyanins	Can be precursors to aromatic phenols (4-EP, 4-EG), participate in browning						
	Gallic acid	seeds and oak cooperage	10-100	Indicator of new oak influence							
				Flavenoids							
	Malvidin Glucoside			Most common anthocyanin (39-72% of total)	Coloria como a duviano 50% hast first como effect						
Anthocyanins	Monomeric Anthocyanins	skins	150 (20-200)	5-17 different types depending on variety, can be lost to SO2 bleaching or to polymerization with tannins to form polymeric anthocyanins	Color in young red wines, 50% lost first year, affect astringency by capping tannin polymerization						
	Polymeric Anthocyanins			Tannin associated color molecules	stable color over time						
	Total Anthocyanins			Sums monomeric and polymeric forms							
Flavenol	Quercetin Glycosides, Quercetin	skins and stems	10-50	Protects grapes from UV, copigment with anthocyanins to stabilize color	Yellow, bitter (above 30 mg/L), velvety astringency						
Flavan-3-ol	Catechin, epicatechin	seeds and stems	: 5 (10-400)	Monomers that make up tannins	Astringent; bind to anthocyanins to stabilize color; bitter near 200 mg/L, epicatechin more bitter than catechin						
Catechin: E	picatechin ratio is a re	e indicator of seed m	ty and tannin	n development; ratio gets smaller with ripening as catechin gets leaved a catechin terminates the tannin chain	extractable and epicatechin gets more extractable;						
Condensed or hydrolyzable	Tannin	skins, seeds, stems	7! (100-2000)	Antioxidant; polymer of catechin, epicatechin , gallic acid	Strongly affects flavor, color, mouthfeel, body, astringency						
	Polymeric Anth	· • • • •		Measure of tannin modification, increases as polymeric							
	Resveratrol	grape skin	0-10 mg/L	Concentration related to grape variety and stress from UV light and fungal attack							
	IBMP	skins, seeds, stems	Sensory threshold 6 - 15 ppt	3-isobutyl-2-methoxypyrazine, potent flavor compound	Herbaceous and/or green bell pepper aromas						

Red Wine Phenolic Panel

Do Jacks really Matter? Investigating the need for sorting after destemming in Cab Franc and Petit Verdot

Doug Fabbioli Fabbioli Cellars


30 minutes/harvest bin 4-6 people Experiment: Sorted vs. Not Sorted Cabernet Franc Petit Verdot

Guess which are sorted vs. not sorted in your triangle

_		Idb	le 1. Juice ci	liellistry for Cabernet Frai		2023// 1111111	1)				
		Brix	pН	Titratable Acidity (g/L)	Acetic Acid	(g/L) Malic	Acid (g/L)	YAN (mg/L)			
Ν	lot Sorted	19.83	3.83	4.95	0.13		2.5	156.92			
S	orted	18.75	3.79	4.98	0.09		2.45	173.88			
		Brix	рН	Titratable Acidity (g/L)	Acetic Acid (g/L) Malic	Acid (g/L)	YAN (mg/L)			
ot S	orted	19.83	3.83	4.95	0.13		2.5	156.92			
rte	d	18.75	3.79	4.98	0.09		^{2.45} 2 (ppm)	173.88			
	Acetic Acid (g/L) pH Titratable Acidity (g/L) Ethanol (%) Total Free Molecular Table 2: Wine chemistry of Cabernet Franc wine made from sorted and and four sorted fruit (ICV Labs,4March 2023) Sorted										
	Sorted	0.69	3.68	4.91	12.44	37	SO2 (ppm)	0.23			
		Acetic Acid (§g/L)	p H 3.75	Titratable Acidity (g/L)	Ethan2017(2%)	Total	F ₫ €	M ol<u>e</u>s ular			
	Not Sorted	0.6 3 .67	3.78.73	4. 8 585	1 2246 1	355	18	00.3216			
		0.69	3.68	4.91	12.44	37	12	0.23			
	Not Sortod	0.67	3.75	4.87	12.72	29	15	0.25			
	Not Sorted	0.6 P olymeri	c An 3th763 cyan	nins 4.85 Total Anth	Total Anthocyanins1		18	Tanni 0 .31			
	Sorted		18	21	6	12		214			
	JULEU		18	21	2	12		222			
	Not Sort	ed Polymeric A	nthocyanin	s Total Ant <mark>f</mark> ð	Zyanins	Catechin		Tannin			
		1	8 ²⁰	218	2187			24154			
	Sorted	1	8	212		12		222			
		2	0	257		17		244			
	Not Sorted	2	0	257		17		245			

Table 1: Juice chemistry for Cabernet Franc (October 3, 2023)(Vinterra)

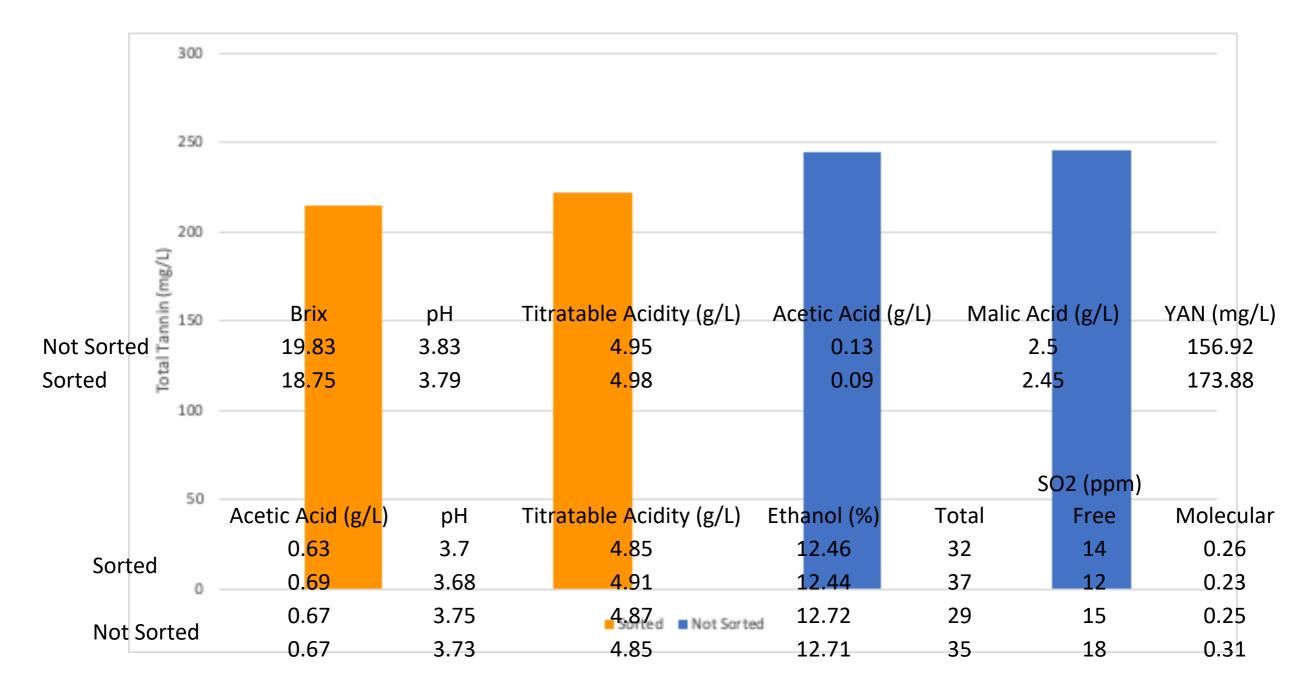


Table 3: Phenolic composition of Cabernet Franc wine made from sorted and not sorted fruit (mg/L) (ETS Labs, March 2023)

	Polymeric Anthocyanins	Total Anthocyanins	Catechin	Tannin
Sorted	18	216	12	214
Sorteu	18	212	12	222
Not Cortod	20	257	17	244
Not Sorted	20	257	17	245

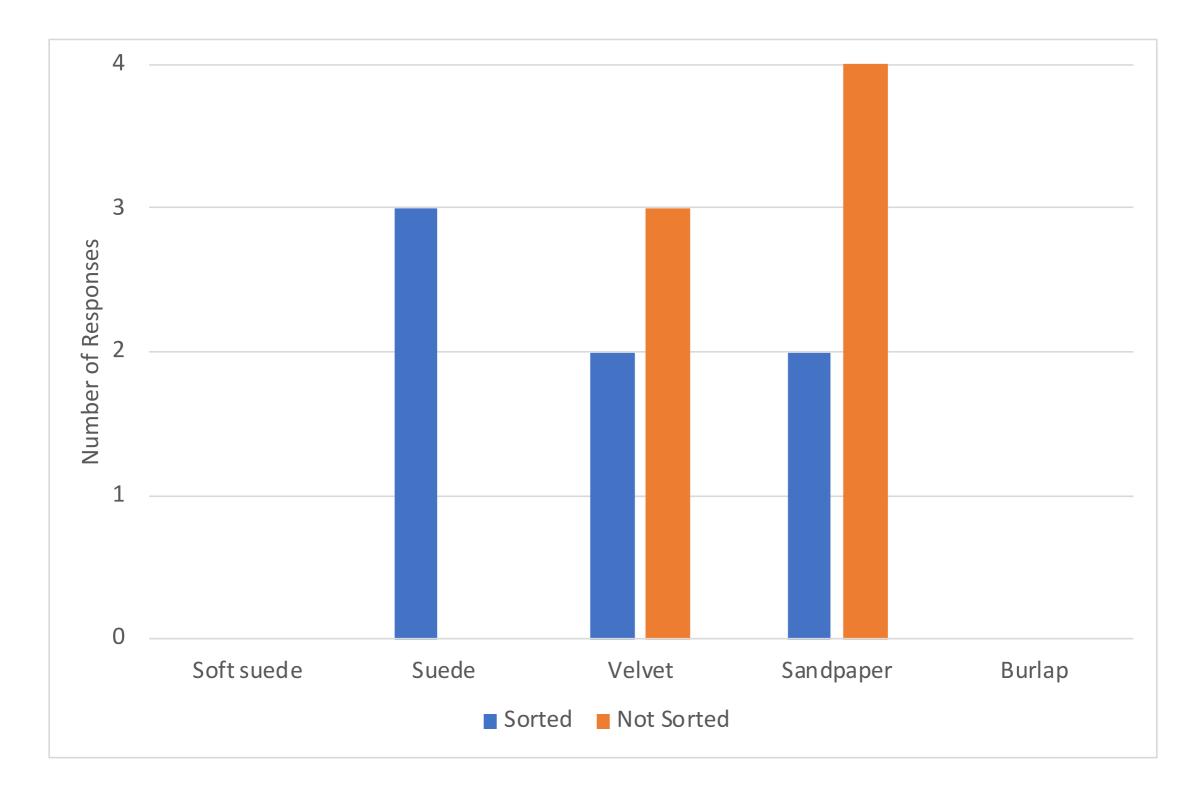
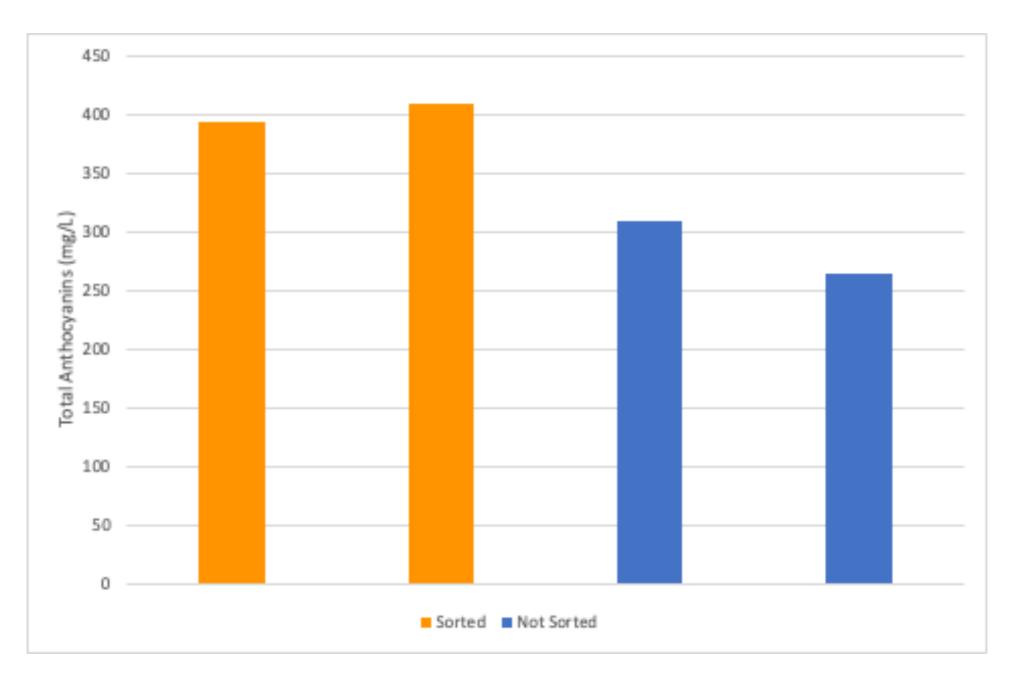

Flight 2 Sensory Impressions

Table 6: Mean descriptive scores for five attributes of sorted vs. not sorted Cabernet Franc 7 out of 18 winemakers could distinguish the wines in a triangle test Not significantly different

	Sor	ted	Not S	orted		
Descriptor	Mean	SD	Mean	SD	F	Р
Fruit intensity	5	1.16	5.9	1.68	2.84	0.12
Fruit character	3.6	1.72	5.7	1.11	8.44	0.01
Herbaceous/green	4.7	1.89	4.6	2.17	0.02	0.9
Bitterness	5.1	2.27	4	2.08	1.49	0.25
Astringency	4.3	1.98	6	0.84	6.18	0.03


Figure 3: Fabric selected by respondents to represent astringency of each Cabernet Franc treatment

Not Sorted			_ /	- • •
	20	257	17	245

Table 4: Wine chemistry of Petit Verdot wine made from sorted and not sorted fruit (ICV Labs, March 2023)

					SO2 (ppm)		
	Acetic Acid (g/L)	рН	Titratable Acidity (g/L)	Ethanol (%)	Total	Free	Molecular
Cortod	0.7	4.02	5.65	10.57	43	20	0.17
Sorted	0.68	4.03	5.57	10.65	45	24	0.2
Net Certed	0.69	3.97	5.83	10.76	26	9	0.08
Not Sorted	0.77	3.96	6.11	10.73	20	< 7	0

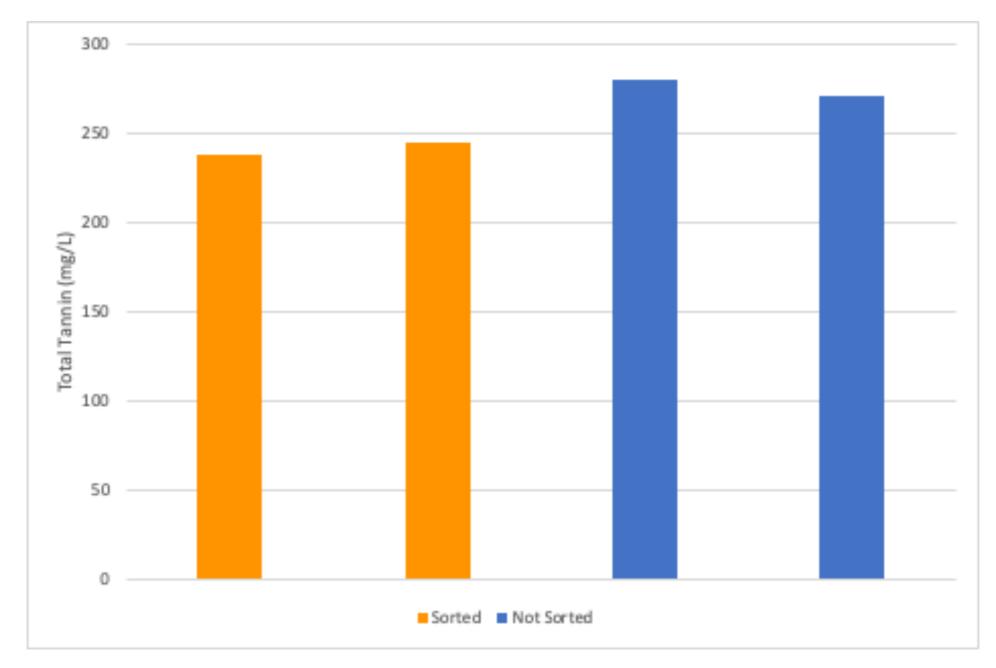


Table 5: Phenolic composition of Petit Verdot wine made from sorted and not sorted fruit (mg/L) (ETS Labs, March 2023)

	Polymeric Anthocyanins	Total Anthocyanins	Catechin	Tannin
Sorted	26	393	43	238
Sorteu	26	408	44	244
Not Contod	30	308	35	279
Not Sorted	29	264	33	270

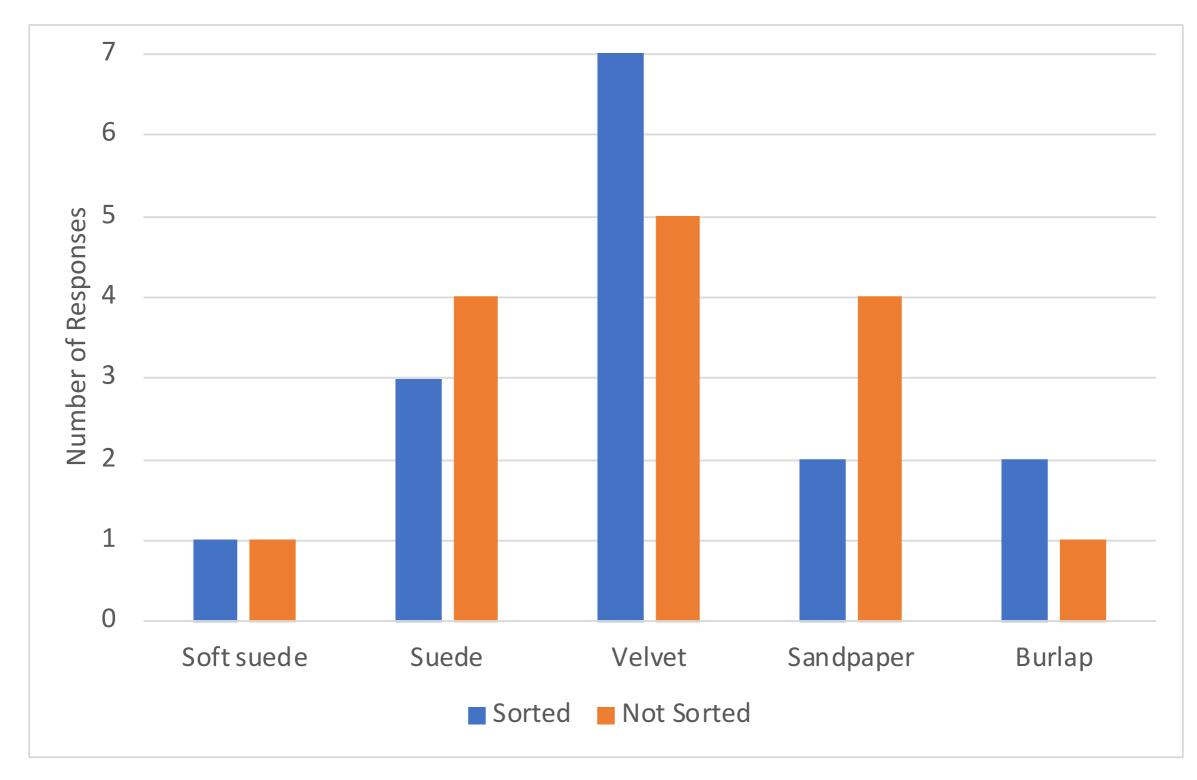
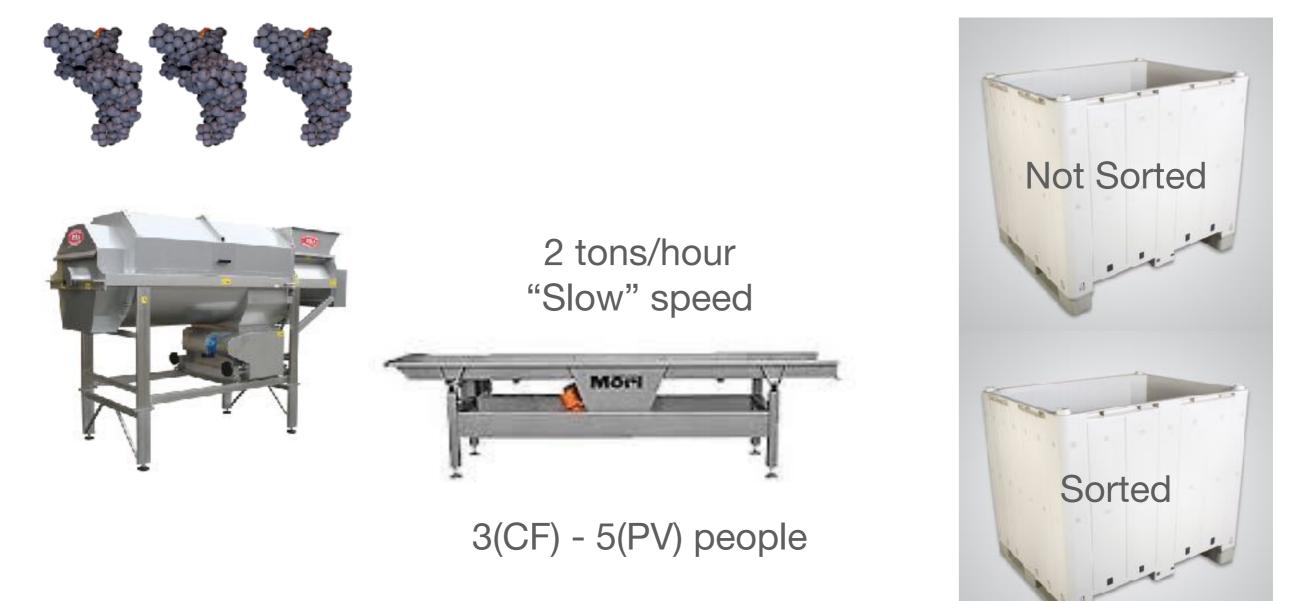
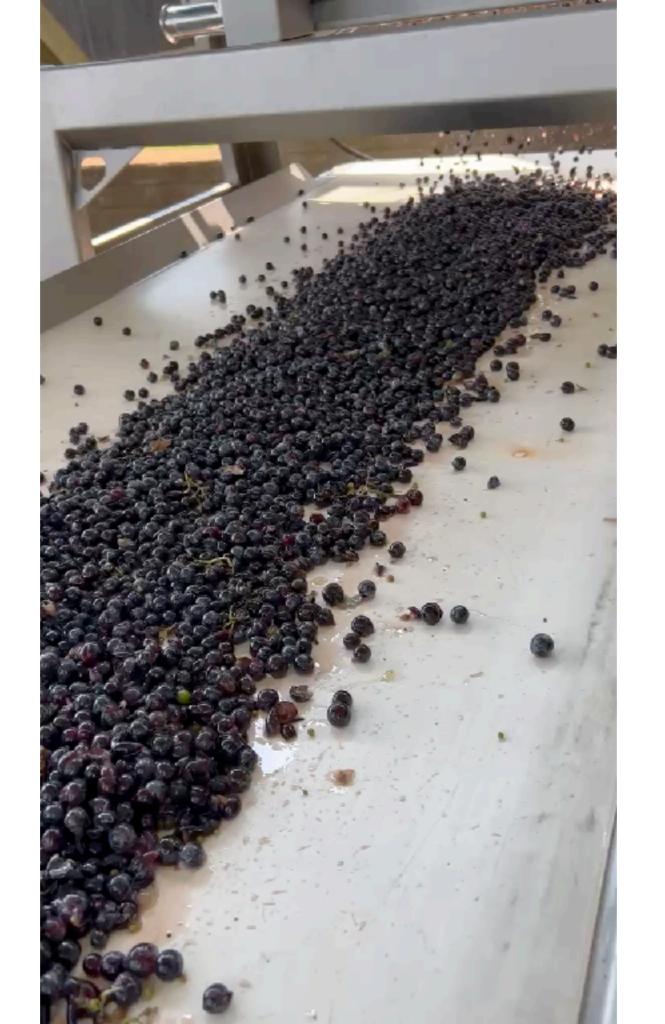

Flight 3 Sensory Impressions

Table 7: Mean descriptive scores for five attributes of sorted vs. not sorted Petit Verdot 15 out of 16 winemakers were able to distinguish the wines in a triangle test The wines were significantly different

	Sor	ted	Not S	orted		
Descriptor	Mean	SD	Mean	SD	F	Р
Fruit intensity	5.9	1.69	5	1.96	2.94	0.1
Fruit character	4.8	2.4	4.9	2.22	0.03	0.86
Herbaceous/green	4.6	2.35	4.4	2.53	0.07	0.79
Bitterness	4	1.93	4.5	2.54	0.62	0.44
Astringency	4.6	1.68	4.8	2.27	0.18	0.68

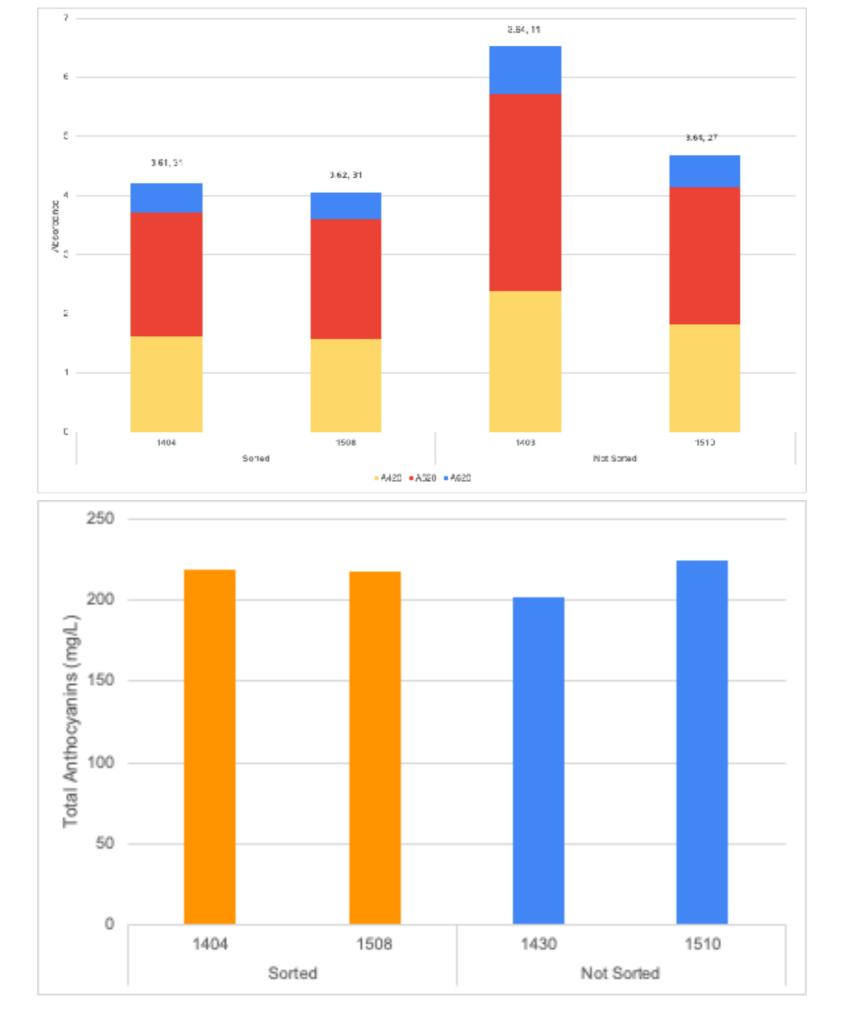

Figure 4: Fabric selected by respondents to represent astringency of each Petit Verdot treatment

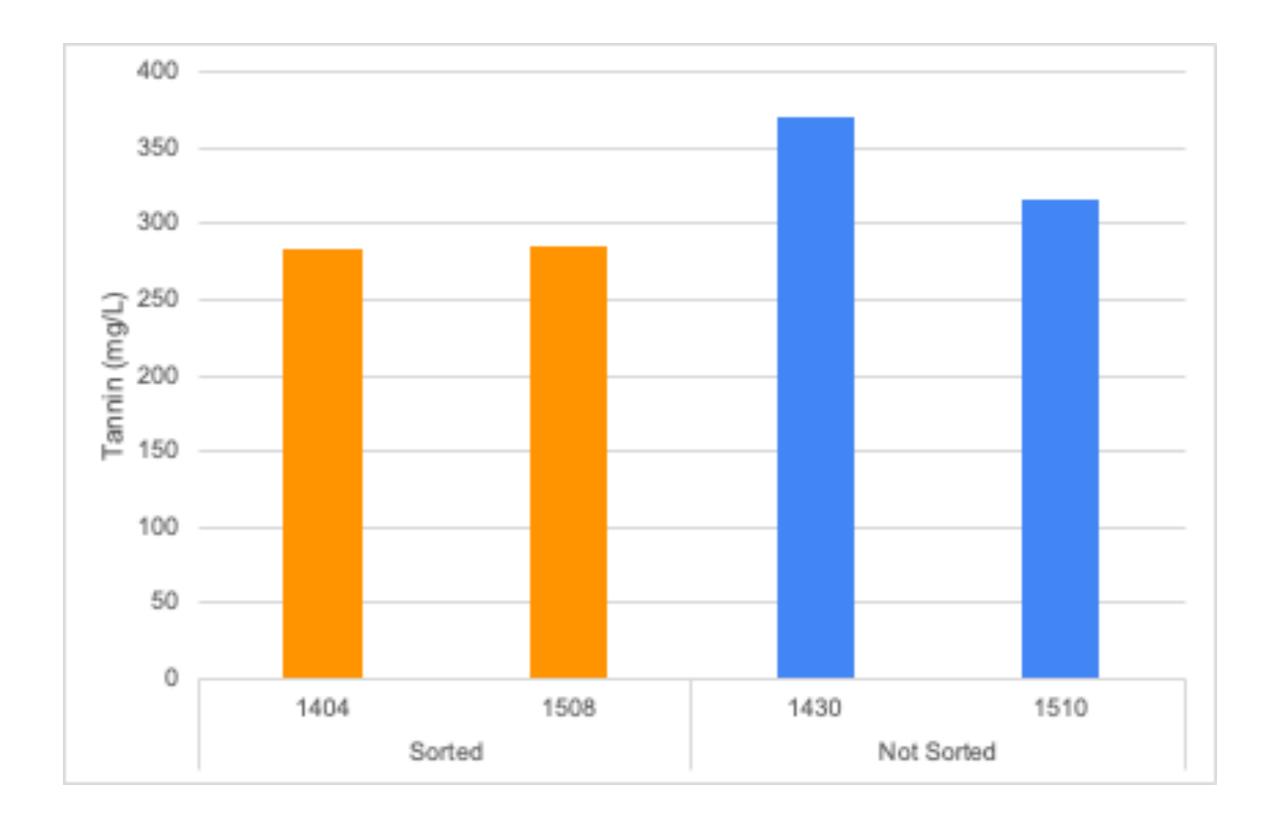

Do Jacks really Matter? Investigating the need for sorting after destemming in Cab Franc and Petit Verdot

Kirsty Harmon and Scott Wilcox Blenheim Vineyards

I think this will be the only way that I will be able to sleep soundly at night thinking about all of the jacks that end up in fermentations! (Kirsty Harmon)

Not Sorted


Sorted



		Brix	рН	Titratable Acidity (g/L)	Malic Acid (g/L)	YAN (mg/L)
Cabernet Fra	anc Sorted	21.4	3.67	3.3	1.47	98
9/18/23	Not Sorted	Brix.8	3,67 pH	Titratable ³ Acidity (g/L)	Mal lc⁴A cid (g/L)	YAN (mg/L)
Capernet Franc Petit Verdot 9/1 8/23 9/23/23	Sorted Sorted Not Sorted Not Sorted	21.4 23.9 21.8 23.9 23.9	3.67 3.34 3.67 3.34 3.34	3.3 5,5, 3.4 5.7	1.47 3.25 1.41 3.25 3.25	98 66 95 71
Petit Verdot 9/23/23	Sorted Not Sorted	23.9 23.9	3.34 3.34	5.5 5.7	3.25 3.25	66 71

SO2 (ppm)

		Acetic Acid (g/L)	рН	Titratable Acidity (g/L)	Ethanol (%)		Total	Free	Molecular
Cantad	140/	Table 2: Wine Chemi	istry3f g1 C	abernet Frangwith and	y r	ithout sorting (I	CV	Laks, Marc	h 20 <u>3</u> 3})	0.69
Sorted	150	0.49	3.62	4.79		12.4		76	§0 2 (ppm)	0.67
Not Corte	14(Acetic A cids4 g/L)	p 31. 64	Titratable4A7C4dity (g/)	Ethan o l (%)		Stotal	1 F ree	0№3 lecular
Not Sorte	1402451	0.40953	3.5664	478		12.2593		7578	2731	0.570.69
	1508	0.49	3.62	4.79		12.4		76	31	0.67
Not Sorted	1403	0.54	3.64	4.74		12.6		86	11	0.23
	1510	0.53	3.64	4.79		12.69		75	27	0.57
<u> </u>									SO2 (ppm)	
		Acetic Acia (g/ L)	рН	Titratable Acidity (g/-)			Total	Free	Molecular
Sorted		0.68	3.62	5.72		14.03		109	52	1.21
Not Sorte	ed	0.67	3.72	5.39		13.9	89		46 SO2 (ppm) 0.86	
		Acetic Acid (g/L)	рН	Titratable Acidity (g/L)	Ethanol (%)		Total	Free	Molecular
Sorted		0.68	3.62	5.72		14.03		109	52	1.21
Not Sorted		0.67	3.72	5.39		13.9		89	46	0.86

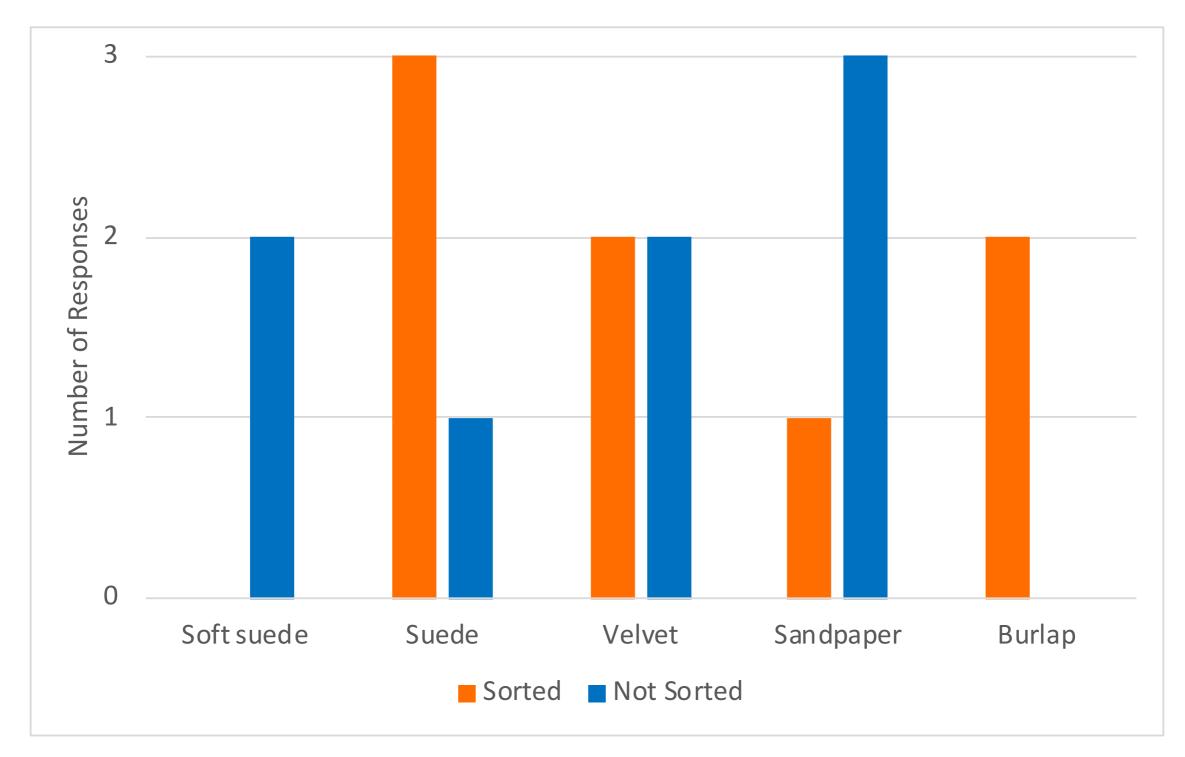
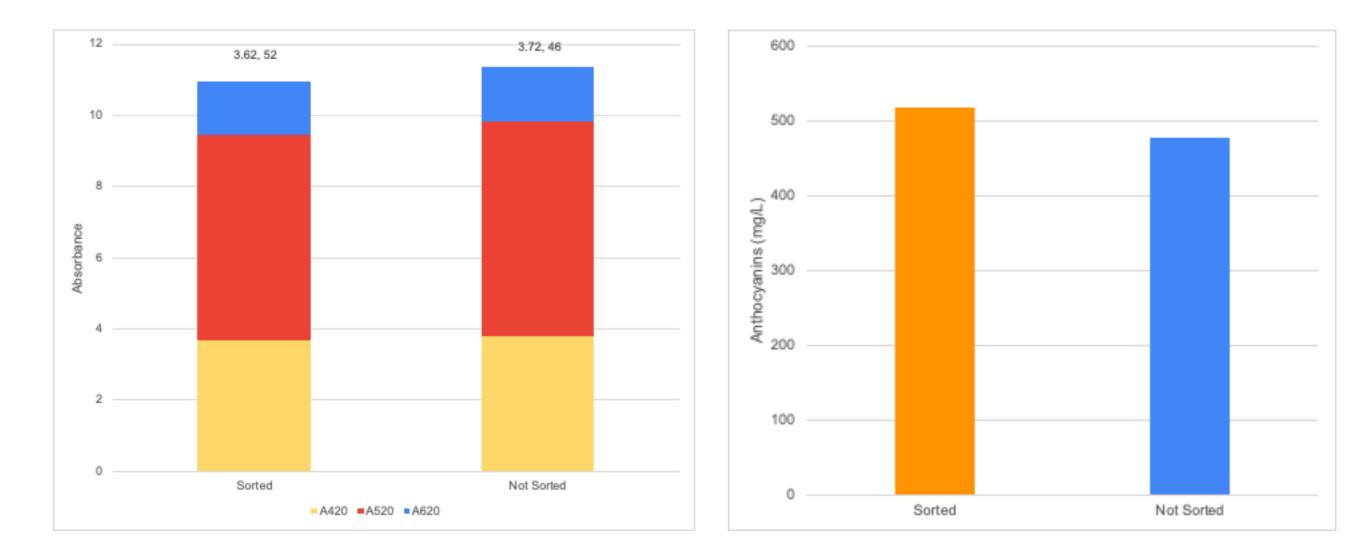

Flight 4 Sensory Impressions

Table 5: Mean descriptive scores for five attributes of sorted vs. not sorted Cabernet Franc8 out of 18 winemakers could distinguish the wines in a triangle testThe wines were not significantly different

	Sorted		Not S	orted		
Descriptor	Mean	SD	Mean	SD	F	Р
Fruit intensity	5.6	2.07	5.4	1.3	0.37	0.55
Fruit character	4.4	2.23	4.6	1.92	0.04	0.85
Herbaceous/green	3.5	2	3.3	1.79	0.05	0.82
Bitterness	4.1	2.1	3.9	1.64	0.18	0.68
Astringency	5.9	1.36	4.5	1.6	4.09	0.06

Figure 3: Fabric selected by respondents to represent astringency of each Cab Franc treatment



9/18/23	Not Sorted	21.8	3.67	3.4	1.41	95
Petit Verdot	Sorted	23.9	3.34	5.5	3.25	66
9/23/23	Not Sorted	23.9	3.34	5.7	3.25	71

		Brix	рН	Titratable Acidity (g/L)	Malic Acid (g/t)	apm ^Y AN (mg/L)
Cabernet Franc	Sorted	g/L) ^{21.4} pH	Titratable Acio	tity (g/L) 3:3 Ethanol (%)	Total ^{1.47} Free	
9/18/23 1404	Not Sortod	21.8 3.61	3.67 4.78	3.4 12.3	78 1.41 31	⁹⁵ 0.69
1500 Petit Verdot 1403 Dt \$/2/3/2/3	Sorted 0.54	3.82 23.9 3.64 23.9 3.64	4.79 3.34 4.74 3.34 4.79	57	$70 \qquad 31$ 86 3.25 11 75 3.25 27	0.67 66 0.23 71 0.57

							SO2 (ppm)	
		Acetic Acid (g/L	рН	Titratable Acidity (g/L)	Ethanol (%)	Total	<u> </u>	Molecular
	1404	Acetic Acid (g/L)	8 ^H 61	Fitratable ₄ Acidity (g/L)	Ethangl (%)	T gtal	3 ^F 1ree	Molecular
Sorted	1508	0 <u>6</u> 89	33622	4 :73	<u>14</u> .Q3	7609	3152	0. 87 21
Not Sorted	1403	0 <u>6</u> 734	33.7624	5.32	1123.69	889	1146	<u>ი.</u> ე ვ86
Not Sorted	1510	0.53	3.64	4.79	12.69	75	27	0.57

					SO2 (ppm)		
	Acetic Acid (g/L)	рН	Titratable Acidity (g/L)	Ethanol (%)	Total	Free	Molecular
Sorted	0.68	3.62	5.72	14.03	109	52	1.21
Not Sorted	0.67	3.72	5.39	13.9	89	46	0.86

	Polymeric Anthocyanins	Total Anthocyanins	Catechin	Tannin
Sorted	61	518	26	558
Not Sorted	64	477	23	555

Flight 5 Sensory Impressions

Table 6: Mean descriptive scores for five attributes of sorted vs. not sorted Petit Verdot 6 out of 17 winemakers were able to distinguish the wines in a triangle test The wines were not significantly different

	Sorted		Not Sorted			
Descriptor	Mean	SD	Mean	SD	F	Р
Fruit intensity	5.3	1.21	6.3	1.63	3.75	0.08
Fruit character	6.8	0.75	6.5	1.38	0.22	0.65
Herbaceous/green	5	2.45	4.2	1.47	1.4	0.26
Bitterness	4.8	2.4	4.3	1.75	0.48	0.5
Astringency	7	1.27	6.7	1.51	0.19	0.67

Summary

Chemistry

Fabbioli CF: Sorted fruit produced wine with

decreased color, decreased anthocyanins, decreased tannins

Fabbioli PV: Sorted fruit produced with

increased anthocyanins, decreased tannins

Blenheim CF: Sorted fruit produced wine with

Same color, same anthocyanins, decreased tannin

Blenheim PV: Sorted fruit produced with with

Same color, increased anthocyanins, no change in tannin

Funding: The Virginia Wine Board

Shane McManigle, Doukenie Winery Doug Fabbioli, Fabbioli Cellars Kirsty Harmon, Blenheim Vineyards

Stone Tower, Host

For full reports and background: <u>www.winemakersresearchexchange.com</u> For questions/comments: <u>VaWrex@gmail.com</u>